If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x=399
We move all terms to the left:
2x^2+3x-(399)=0
a = 2; b = 3; c = -399;
Δ = b2-4ac
Δ = 32-4·2·(-399)
Δ = 3201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{3201}}{2*2}=\frac{-3-\sqrt{3201}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{3201}}{2*2}=\frac{-3+\sqrt{3201}}{4} $
| 1/x=0.78 | | (2x-1)^2=64 | | 14=40-8(-5-1w) | | 3y+7=-10 | | 3(2x+5)=-2(7–4x) | | x/5x+15=75 | | |5x-12|=|4x-16| | | 4(5y−2)=40 | | X-1=(x-1)(2x+7) | | 4b=-7 | | x+3-x^2-6x-9=0 | | 5+8y=51 | | √5x+10=√6x+4 | | 5^3-6x=0 | | 4x–7=3x+2 | | (w-2)^2+28=0 | | m4+4m3+8m2+8m+4=0 | | 20w+10w=4w | | 5(x+3)=2(2x-12) | | -6x+19=6 | | x÷3+0,5=-2x+1 | | 2x+4=x-6 | | 13x-14=-20 | | 16y-13=29 | | X-4+2(x-3)-5x=4x+1 | | 6(3x+4)=2(9x-3) | | 3,6+x=6 | | 3x-9=2x-4+12=x+1 | | m2-10m=0 | | 6x+8=2x-1÷2 | | (7x/5)-1=3 | | 8x3=3x8 |